Modulation of RecA nucleoprotein function by the mutagenic UmuD'C protein complex.

نویسندگان

  • W M Rehrauer
  • I Bruck
  • R Woodgate
  • M F Goodman
  • S C Kowalczykowski
چکیده

The RecA, UmuC, and UmuD' proteins are essential for error-prone, replicative bypass of DNA lesions. Normally, RecA protein mediates homologous pairing of DNA. We show that purified Umu(D')2C blocks this recombination function. Biosensor measurements establish that the mutagenic complex binds to the RecA nucleoprotein filament with a stoichiometry of one Umu(D')2C complex for every two RecA monomers. Furthermore, Umu(D')2C competitively inhibits LexA repressor cleavage but not ATPase activity, implying that Umu(D')2C binds in or proximal to the helical groove of the RecA nucleoprotein filament. This binding reduces joint molecule formation and even more severely impedes DNA heteroduplex formation by RecA protein, ultimately blocking all DNA pairing activity and thereby abridging participation in recombination function. Thus, Umu(D')2C restricts the activities of the RecA nucleoprotein filament and presumably, in this manner, recruits it for mutagenic repair function. This modulation by Umu(D')2C is envisioned as a key event in the transition from a normal mode of genomic maintenance by "error-free" recombinational repair, to one of "error-prone" DNA replication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical basis of SOS-induced mutagenesis in Escherichia coli: reconstitution of in vitro lesion bypass dependent on the UmuD'2C mutagenic complex and RecA protein.

Damage-induced SOS mutagenesis requiring the UmuD'C proteins occurs as part of the cells' global response to DNA damage. In vitro studies on the biochemical basis of SOS mutagenesis have been hampered by difficulties in obtaining biologically active UmuC protein, which, when overproduced, is insoluble in aqueous solution. We have circumvented this problem by purifying the UmuD'2C complex in sol...

متن کامل

Differential recognition of ultraviolet lesions by RecA protein. Possible mechanism for preferential targeting of SOS mutagenesis to (6-4) dipyrimidine sites.

A knowledge of the biochemical basis for UV-induced mutagenesis requires an understanding of the interaction of SOS-activated proteins with DNA polymerase at the replication-blocking dipyrimidine lesions. We have suggested previously that the presence of RecA in this multiprotein complex might be an important feature of induced mutagenesis because RecA associates preferentially with UV-irradiat...

متن کامل

Active nucleoprotein filaments of single-stranded binding protein and recA protein on single-stranded DNA have a regular repeating structure

When E. coli single-stranded DNA binding protein (SSB) coats single-stranded DNA (ssDNA) in the presence of 1 mM MgCl2 it inhibits the subsequent binding of recA protein, whereas SSB binding to ssDNA in 12 mM MgCl2 promotes the binding of recA protein. These two conditions correspond respectively to those which produce 'smooth' and 'beaded' forms of ssDNA-SSB filaments. By gel filtration and im...

متن کامل

"Activated"-RecA protein affinity chromatography of LexA repressor and other SOS-regulated proteins.

We have developed an affinity column to study the interaction of LexA repressor and other substrates with the activated form of RecA protein. Nucleoprotein complexes of RecA protein, (dT)25-30, and adenosine 5'-[gamma-S]thio-triphosphate were formed in solution and bound to RecA protein-agarose columns. These "activated"-RecA nucleoprotein complexes were retained by strong hydrophobic interacti...

متن کامل

Inhibition of RecA protein function by the RdgC protein from Escherichia coli.

The Escherichia coli RdgC protein is a potential negative regulator of RecA function. RdgC inhibits RecA protein-promoted DNA strand exchange, ATPase activity, and RecA-dependent LexA cleavage. The primary mechanism of RdgC inhibition appears to involve a simple competition for DNA binding sites, especially on duplex DNA. The capacity of RecA to compete with RdgC is improved by the DinI protein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 49  شماره 

صفحات  -

تاریخ انتشار 1998